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Abstract

In very deep-submicron VLSI, certain manufacturing step®sotably
optical exposure, resist development and etch, chemiganadeposi-
tion and chemical-mechanical polishing (CMP)— have vayyaffects
on device and interconnect features depending on locahcteistics
of the layout. To make these effects uniform and predictabklayout
itself must be made uniform with respect to certdiensityparame-
ters. Traditionally, only foundries have performed thetga®cessing
needed to achieve this uniformity, via insertion (“fillingdr partial
deletion (“slotting”) of features in the layout. Today, hewer, physical
design and verification tools cannot remain oblivious tohsfomindry
post-processing. Without an accurate estimate of thedilind slot-
ting, RC extraction, delay calculation, and timing and eamalysis
flows will all suffer from wild inaccuracies. Therefore, fue place-
and-route tools must efficiently perform filling and slogiprior to
performance analysis within the layout optimization lod¢e give the
first formulations of thefilling and slotting problemshat arise in lay-
out post-processing or layout optimization for manufaahiiity. Such
formulations seek to add or remove features to a given psdegsr, so

that the local area or perimeter density of features sadigfiescribed
upper and lower bounds in allindowsof a given size. We also presen

efficient algorithms for density analysis as well as for figjislotting
synthesis. Our work provides a new unification between rastuf-
ing and physical design, and captures a number of genergreegents
imposed on layout by the manufacturing process.

1 Introduction

3. uniformity of CMP, which is used for planarization of iriegyer
dielectrics (or glass, with newer shallow-trench isola}im multi-
layer interconnect processes, depends on uniformity dtifea
on the interconnect layer beneath a given dielectric layeaxbid
dishing and other irregularities.

In this paper, we are concerned primarily with (2) and (3)e Thnnec-
tion to (1) — that process-induced constraints on layoutikheot ham-
per separate optimizations related to proximity effeces. (lOPC) — is
understood. To minimize the impact of manufacturing preqasysics
on device yield, foundries imposiensityrules so that the layout be-
comes more uniform. For example, a local interconnect nmagar
might have a requirement that everypt@x 10umwindow contain at
least 35ur?, but no more than 70n?, of metal features [1] [10]. Many
process layers, including diffusion and even thin-ox, canehassoci-
ated density rules [1] [14]. While empty areas must Hiled, very
wide features (e.g., power buses on top-layer metal) mustdiedto
avoid lift-off in CMP.

Traditionally, only foundries or specialized TCAD toolsmapanies
have performed the post-processing of layout needed t@eelthis
uniformity, via insertion (“filling”) or partial deletion “Slotting”) of

tfeatures in the layout. Today, however, ECAD tools for pbgkdesign

and verification cannot remain oblivious to such post-pseto®y. With-
out an accurate estimate of the downstream filling and stptit the
foundry, all the RC extraction, delay calculation, timimgjse and reli-
ability analyses will be inaccurate, leading to a brokerigtefiow. For
instance, slotting will change the cross-section of a pdwes, which
in turn affects peak current density and reliability.

In the Appendix, we present analyses showing the extent tohwh

As CMOS technology advances to the 180nm generation anchbeyametalfilling and slotting can affect the results of capacitandeastion

the manufacturing process has an increasingly constepigffect on
physical layout design and physical verification. Foundrgreomics
dictate that process window volumes be maximized; this iin tlic-
tates that device and interconnect features be fabricat@dealictably
and uniformly as possible. On the other hand, the physicemion-
ductor processing make large process windows and uniformufae-
turing difficult [3] [11] [8] [4]. In particular:

1. optical interference effects in lithography can crease-tense”
effects, where the exposure intensity for isolated featigealif-
ferent from that for densely packed features;

2. reaction dynamics in resist development and etch, as aeell
chemical vapor deposition, can exhibit microloading effeechere

local variations in the density of exposed feature surfaea ge-
sult in line width or gate length variations across the chipd
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and performance analysis. Other analyses in the Appenaiw shat
filling and slotting can, for the most part (and especiallytfe filling
case), be viewed in theingle-layercontext. The precise locations of
fill/slot geometries on a given layer will not significantlffect perfor-
mance of interconnect on a neighboring layer. Rather, thmimnt
effects (coupling to dense geometries on neighboring fysielding
from farther layers, and shielding of non-adjacent sangeflaoupling)
stem from lower bounds on area density on all layers. Thiblesaus
to address the metal filling and slotting problems one layartame?

Our Contributions

In this paper, we give the first formulation of tlidling and slotting
problemghat arise in layout post-processing or layout optimizafiar
manufacturability. Essentially, we seek to add or remoauies to
a given process layer, such that the local area or perimetesity of
features satisfies prescribed upper and lower bounds iwiatlows

1For example, in 0.385mand below, one major semiconductor house requires diffusio
area density between 0.25 and 0.40, and metal area densitydre0.40 and 0.70. Another
major semiconductor house requires metal area densityablbast 0.35. Note that density
rules and post-processing solutions may differ between, ASIC and high-end micropro-
cessor technologies, due to tradeoffs between devicerpafice and predictability.

2There are several notable conditions under which the silagier assumption fails.
Slotting approaches (e.g., for power buses) must avoitirgjotontacted areas. Thus, any
slotting synthesis approach must either perform re-lagdytower distribution (unlikely)
or else specifically mark contacted rectangles within pdweses as inviolate. Filling ap-
proaches must pay attention to adjacent layers if they comti@awn geometries outside
geometries on the layer to be filled. For example, poly fillgetry in regions with under-
lying active diffusion can create spurious transistors] again regions must be marked as
inviolate on the poly layer.
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of given size. After formally defining the filling and slottnprob- ¢ An extremal-densitwindow is a window with either maximum

lems, we present efficient algorithms for density analysisvell as density or minimum density over all windows in the layout. If
filling/slotting synthesis. The remainder of this secticgfides nota- an algorithm applies to either maximum-density or minimum-
tion and gives a general statement of the filling and slottirablem. density analysis, we generically refer to extremal-dgnaitaly-
Then, Section 2 gives new algorithms for analysis of minimamd sis.

maximum-density (i.e extremal-densifywindows. All of these meth-

ods can optionally return all extremal-density windowsabirviolat- Given the definitions and garameters above, we define thadrdind
ing windows, with the same time complexity needed to retusingle Slotting Problem as follows:

extremal-density window. Section 3 establishes perforadmounds

for two practical approximations for the filling and slotiproblem, The Filling and Slotting Problem. Given a design rule-
namely, when only windows dixed dissectionsf the layout region correct geometry ok disjoint rectilinear rectangles in an
need to satisfy density bounds. Section 4 develops newitige for nx n layout region, a minimum feature size area and/or
synthesis of filling/slotting geometries, and we conclugdisting sev- perimeter density upper and lower bounkdg Ua,Lp and

eral directions for future research. Up, and a window sizev < n, add fill and slot geometries

into the layout while preserving circuit function and desig

Notation and Problem Statement rule-correctness such that evemyx w window in the lay-

We will use the following notation and definitions.

out region satisfies the lower and upper bounds on area and
perimeter density.

The input is dayoutconsisting of rectangulajeometries 2 Algorithmsfor Density Analysis
¢ = smaller of the minimum feature width and minimum featurgefore addressing the Filling and Slotting Problem, we éiestelop al-
separation. The value afis typically 25 to 50 times the manu- ¢rithms for density analysis (with respect to either arepesimeter)
facturing unit. in a given layout. Given a fixed layout and window size, we Isthed
lljlermine a maximum-density and a minimum-density windo. (iour
analysis will return extremal-density window(s)). Our digm analysis
methods can repodil violations of density bounds in the layout within
the same time complexity needed to report a single extreieasity

n = size of the |ay0ut region side. Typ|ca||y’ we m|ght seas window (See Section 25) We state the density analysislqmrolas
an integer which is about 5000- c. Note thatc does not imply follows:

that 1 is “the size of the grid”: the only grid that is guaranteed is
the manufacturing grid, which is typically 25 to 50 times $iera
thanc.

w = fixed windowsize. The window is the moving square are
over which density lower and upper bounds apply. A typicad-wi
dow size would bev = 50-c.

Extremal-Density Window Analysis. Given a fixed win-
dow sizew and a set ok disjoint rectangles in anx n layout
region, find an extremal-densityx wwindow in the layout.

k = the complexity of the original layout, i.e., the total numbe

of rectangles in the input. This section presents a series of algorithms for the Extrébeasity

Window Analysis problem. We first present a density analgdip-
La,Ua = area densityower and upper bounds expressed as refithm with time complexityO(n?) that is strictly a function of the lay-
numbers 0< Ly < Ua < 1. Eachw x w region of the layout Out size. We then develop a different algorithm with time gbewity
must contain total area of features (considered as a fracio O(K?) that is strictly a function of the number of rectangles. Ripave
the quantityw x w) satisfying these bounds. propose an algorithm with even faster expected runtimee Nuwit the
0O(n?) andO(k?) time complexities are incomparable in terms of effi-
Lp,Up = perimeter densityower and upper bounds expressediency, since? can sometimes be much smaller thén(e.g. .k = 100
as real numbers & L, <Up < 1. In practice, the maximum andn = 10*) and at other times much larger (e ky= 10° andn = 10%).
perimeter density is attained in memory cores, and the ®URd Therefore, our choice of algorithm for density analysis Wodepend

andUp are set with respect to this maximum density. Considergh the exact values ofandk, with overall ime complexity of the “hy-
wx wwindow filled with as many smad x ¢ squares as possible, prid” approach bein@(min(k2, n?))

where the origins of the small squares are offset from ealoérot ) ]

by integer combinations of the vectof6,2c) and (2¢,0). We 2.1 ALG1: O(r?) Density Analysis

consider the total perimeter of these squares to be the naXimg, first algorithm for density analysis has time complegn?), and

possible feature perimeter. Then, eack w region of the layout operates as follows.

must contain total perimeter of features (considered aacifm o )

of the maximum possible feature perimeter) satisfying tivery 1. Initialize ann-nboolean array to all 0's, and then put 1's in ar-

bounds. ray positions corresponding to areas in the layout thatavered
by thek rectangles. This takes tin@(n?).

2. Create another-narraySand initialize eacls]i, j] to be equal to
the number of 1's appearing in the southwest quadrant of &ra
with respect to coordinatk, j] (i.e., Si, j] counts the number of
1's in the subarray|1..i,1..j]). This can be done by scanniiy
one row at a time from left to right, maintaining a running som

Lg,Uq = densitylower and upper bounds expressed as real num-
bers 0< Lg <Ug < 1. It turns out that most of our results and
algorithms easily apply to either the area density or pet@me
density regimes. Thus, we will generically indicate thegign
bounds usind.4 andUg.4

30ur implementation reads in layouts from GDSII Stream fdrrifsithout loss of gen- the 1's encountered on all the rows, and storing all thestapar
erality, our discussion below assumes that rectilineangdtes have been fractured into, sums into the arrag. All this preprocessing requires a total of
say, horizontally maximal rectangles. It is also possiblgéneralize our analyses and al- o(nZ) time.

gorithms from rectangles to trapezoids. Note that stanifahastry tools, such as Cadence.

Dracula, will fracture geometries into horizontal trapieo[2]. 5 Note that this is asatisficingformulation where we seek only a feasible solution, as

4To our understanding, current foundries have not yet imgdreh area density and opposed to anptimizationformulation where we seek a best solution. We can easily give
perimeter density boundsmultaneouslyn a given layer [14]. However, we expect thatvariant optimization formulations (e.g., insert as litttetal as possible, minimize the sum
such simultaneous constraints will be required in futughi®logies, and we analyze fill of window density deviations from an ideal density, etc.)owgver, it appears that the
pattern synthesis for such a situation in Section 4 below. current state of technology does not yet require such faatiarns.
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3. After this preprocessing phase, the density of an argisze Corollary 2 Given alayout of k rectilinearly-oriented rectangles ieth
w x h rectangle with its bottom-left corner located at an arlpjtra n x n grid and a fixed window size w, there exists a w window with
position(i, j) can be found in constant time, as follows: extremal area density that abuts layout rectangles witheast two of

its sides. 0
densityw x h rectangle ati, j))
_ ; ; Qi g i Notice that a type of geometric symmetry/duality is present, in
St R =S ] =S SRS ] that layout rectangles abut tierior of maximum-density windows,
This formula uses the principle of inclusion-exclusiore thurth ~ and abut thexterior of minimum-density windows. Finally, a similar
term is added in the formula above since itis implicitly sabted argument establishes analogous results for windows hawasgmum
twice by the middle two terms. The technique is analogous & Minimumperimeterdensity.

efficient range tally queries in computational geometry [9
d ¥a b g v 9] Corallary 3 Given alayout of k rectilinearly-oriented rectangles ieth

In particular, the density of alD(n?) windows of fixed sizavx w nx n grid and a fixed window size w, there exists a w window with
can be determined iB(1) time per window, i.e., a total dd(n?) time. ~extremal perimeter density that abuts layout rectangléb atileast two
All extremal-density windows can be determined using theesgech- Of its sides. O
nigue within the same time complexity. This method givenaasid-
erably more general than is required to solve the extreraasity win- 2.3 AL G2: O(k?) Density Analysis
dow problem, in that the preprocessing enables the futUtdisd of - Reca| that Theorem 1 shows that an extremal-density wincast
arbitrary dynamic queries in constant time per query&oy window  {och rectangles of the layout with at least two of its sidée.observe
sizew x h. Thus,w andh are both (variable) parameters in the quenpat there are onlp(k) sides of rectangles in the first place, and that
input, rather than fixed (as is the case in practice) overnglut in- O(kz) density analysis can be achieved essentially by (i) defiainin-
stances. dow for each of thes®(k) rectangle sides, and (ii) computing @(k)
2.2 Propertiesof Extremal-Density Windows time the window’s intersections with all rectangles asides$ along the

tangle side. This yield Igorith ith Il tin@enplexit
To obtain an algorithm with time complexity that is stricdyunction of Lef%?ﬂ%? siae 'S YIelCs an algonthm with overaf t Xy

k(as oppgsed to a function of, we f irst prove a resullt t.hat is analogous  \y preprocess by sorting all left and right edges ofkinectangles
to Hanan's Theorem for the rectilinear Steiner minimal tpgeblem 1, wheiry coordinates into a single sorted list(having up to & ele-
[6]. The.Hanan grldover a given layout is formgd by creating vertlcaﬁjems)’ withinO(klogk) time. In the main loop (2), for each “pivot”
an_d honz%ntal lines that pass through all the sides of alfréttangles rectangleR, we create av x w window W that abutsR on the top and
(Figure 1) right (i.e., so that their top-right corners coincide - séguFe 2(a)). We
then compute the density @ in O(k) time by intersectingV with all
k rectangles of the layout (Step (3) of the algorithm).
In the inner loop (4), we slide the windoW horizontally to the
right (Figure 2(a-c)) until it leaveR, updating the density aV each
D L time its left or right edge intersects an edge in the listNote that
|:| the perimeter and area density of the winddiincrease or decrease
q monotonically between such intersection evént¥e update the value
of area density, or the two values of perimeter density¥an constant
] time per intersection event by keeping track of the totabssrsection”
length of the current intersections between the rectarmeisthe left
‘ and right edges dV. We add new intersections that enter the window
W as it advances horizontally, and we subtract from the tbmktreas
of rectangles that exit the window on the left during the sliding pro-
cess. Finally, we repeat Steps 3 through 5 for all ofbét) starting
Figure 1: A layout (left) and its corresponding Hanan grigtt). orientations ofV with respect to the pivot rectangR(Figure 2(d-f)).
The overall time complexity of this algorithm is dominategthe O(k)
scans which requir®(k) time each. A formal definition of the algo-
rithm is given in Figure 3.
Theorem 1 Given a layout of k rectilinearly-oriented rectangles ieth . . .
nx n grid and a fixed window size w, there exists a w maximum- 2.4 ALG3: Fast Expected Time Density Analysis
density window having at least one of its corners at a vertethe ChargingO(k) time for each scan in the ALG2 analysis is pessimistic,
Hanan grid. O since each sliding window is expected to intersect only dldnaation
of the total number of rectangles (the window size is typycaery
Theorem 1 actually establishes a stronger result than idiimgca  small compared with the overall layout area). For each pisotangle,
vertex of the maximum window with a Hanan grid point: it shalat it would be advantageous to scan through only the few retgartpat
there always exists a maximum-density window that toucaesngles actually intersect its associated sliding window (as opdds scanning
of the layout with at least two of its sides (these sides mighth the all k rectangles).
sameayout rectangle). This observation helps us to design ficiexft We implement this speedup via a néwed-dissection preprocess-
algorithm for density analysis, since it limits the possitdcations of a ing step, modifying our algorithm from Figure 3. The layout aiga
maximum-density window (i.e., abutting either one or twalef layout first partitioned intov—r\‘, X vﬂv squares of sizev x w each. Then, for each
rectangles). The argument used to prove Theorem 1 can alsgelbleo such square we create a list of rectangles intersectingiigchis for
establish an analogous result famimumdensity windows. all squares requires a single pass through all rectangtesniain loop

SHere and elsewhere in what follows we state our result forimam-density windows, "The area density is a continuous function and all its minimenaxima occur only at
explaining the extension to minimum-density windows offilhere is some possibility of such intersections. The perimeter density has discotigssuivhen a window edge crosses
confusion. All proofs are omitted due to space constrainisare available in our technical a vertical feature edge. Therefore, at such intersecti@mtswve maintain both possible
report [7]. values of perimeter density (i.e., with and without the ieaitfeature edge).
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By the previous two theorems, substitutigg= O(k - ("—r‘{)z) into the
i i N2, (02 . ny2, .
- - - Si\c/j(;asl'l time complexity ofO(()” + ()< -E-log(({)7-E) +k-E)
=> =
0— 0 — | — Corallary 6 Given k rectangles in thexnn layout region, the maximum-
|:| |:| density width-w window can be found in timé(®)? + klogk + k2 -
(@) (b) (©)

Note that because a window cannot contain more @aw?) rect-
angles, the expected time complexity of ALG3 is also bounbgd
O((8)2 + klogk+k-w?). The same algorithm and expected time bounds

1 L] 1 L] I 0 will hold for finding minimum-density windows, as well as fextremal-

D J [pivor] D [pivor] perimeter density analysis.

i — |:| H— \—‘ — |:| 2.5 Remarks

Our algorithms, as stated, address only the problem of findiisin-
e . . gle extremal-density window. However, they all implicifipd and re-
(d) (e) ) port all windows having extremal density. In fact, all of the alganits
above will detecteverywindow of the layout whose density violates
either of the given density thresholds (either lower or ujppe This
Figure 2: ALG2 starts a window abuttingpivot rectangle(a) and  information can be reported by printing any extremal dgnsitcoun-
slides the window to the right, stopping at each edge thatsettsits tered at the end of every scan phase involving each pivotesigrif its
perimeter (b), until the pivot abuts the opposite side ofwidow,  value violates a density bound. Reporting all density viofes in this
on the outside (c). Other combinations of the pivot-windavem  manner does not increase the running time of any of our dhyos.
tations are then explored (d-f). This process is repeatedJfery We must also re-emphasize that all our techniques outlibesden
rectangle, using each as a pivot in turn. extend in a straightforward way to computing extremal-dgnsin-
dows with respect to total perimeter. For example, to adapO(n?)
algorithm of Section 2.1 to perform perimeter density asaly Step
(1) of that algorithm should mark the locations in arfyhat corre-

ALG2: O(k?) Density Analysis spond to the perimeters of therectangles. Then, Step (2) of the algo-
g‘lﬂ%ﬁtﬂ ;l{‘é%g%x&?;ﬁ%ﬂ%ﬁm dows rithm of Section 2.1 will add up the total perimeter lengthseiach
O Sort allthe Teft and fight edges of &Fectangles by point's south-west quadrant. After all this preprocessiagitrary-
x coordinates into a sorted list L window extremal-perimeter queries can be performed in teanigime
Ezg For each “pivot” rectangl® do per query. To adapt sliding-window area density analysekdaaletec-
3) Find the density of & x w windowW tion of extremal-perimeter density windows, we keep tratke total
that abutsk on the top and right rectangle perimeter inside the sliding window, rather tthentotal rect-
E4g WhileW intersectsR do ) ) ) | Th | is th ; beisagri
5 SlideW to the right to the next point of intersection angle area. The only caveat Is that consistency must beisserm
with one of the edges on the list deciding which grid points are considered to be occupiedayiqular
Record changes in densnﬁ ] ] . rectangle perimeters. Finally, all algorithms describbdve work for
83) Repeat steps (3-5) for all other starting orientatiars¥ any non-squarev x h query window, even ifv andh are input parame-
utput all extremal-density windows

ters (as opposed to being fixed over all input layouts).

3 Fixed-Dissection Density Analyses

In attempting to verify (or satisfy) upper and lower dendityunds for

w x w windows, a very practical method is to check (or enforce¥¢he

constraints only fow x w windows of afixed dissectiorf the layout
of the algorithm checks the rectangle intersections forvergiv x w into ¥ x ¥ tiles, i.e., the set of windows having top-left corners at points
query windowW by examining four lists of rectangles (correspondingi - ¥, j - ¥), fori,j = 0,1, ...,r(vﬂv —1); herer is an integer divisor of
to the four squares that together coVéy. w. To our knowledge, this is the type of verification that is mok

ten performed by commercial todlsUnfortunately, a fixed-dissection
Theorem 4 Given k non-overlapping rectangles with positions unischeme for small cannot guaranteenynontrivial density bounds over
formly distributed in the i n grid, the algorithm from Figure 3 finds all w x w windows (as opposed to only the fixed tiles in the dissection)
the maximum-density ww window in time @Qk- E), after applying Forr = 1, even if the area density of each tile in the fixed dissedtion
a fixed-dissection preprocessing phase with runtinﬁ(agg)2 + (Vﬂv)2~ guaranteed to be at least 75%, a completely emptyw tile can exist.
E- |og((vﬂv)2 -E)), where E is the expected number of rectangles th_@pnversely, if the area density of each window in the fi_xed;eitﬁon
intersect an arbitrary w< w window. o s gL:aranteed to be at most 25%, a completelyviud w window can

exist.

Figure 3: ALG2:0(k?) density analysis.

We call this improved-preprocessing algorithm ALG3. We show s , , — . )

. .. . Practically speaking, this is the most common use model: sigder would like to
th,at the .exlpeCted nu.mber of rectangles that intersect a dived-size know all areas of his layout that violate density bounds hsd these areas can be fixed or
window is indeed quite small. an exception granted by the project management. Any designhave numerous special

cases that require exceptions, e.g., pads and scribe tas.ar
Theorem 5 Given k arbitrarily-sized disjoint rectangles located atr 9As an example of a fixed-dissection -based commercial aisatyd, consider the Drac-
dom positions chosen from a uniform distribution insiderthen layout |/ COVERAGE command [2], or capabilities of mask analysés in the TCAD market-
. . . place [14]. Dracula COVERAGE, for example, allows checkirfigirea density upper and
region, the expected number E of rectangles that intersgistesd Wx W jower bounds inw x w windows (e.g.w — 50um) that occur at a fixed offset, atep(e.g.,

window is bounded by E O(k- (‘%’)2) [J Y= 10umandr =5), from each other.
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On the other hand, the analysis of fixed dissections can be don 1. Sort the wires/rectangles by rows, and within each rowtsem
much faster than the analysis of all eligiblex w windows. First we by the coordinates of their leftmost starting points.
initialize an array ofy x & counters associated with all of the fixed
dissection windows, and then for each rectarigleve increment the
counters of the windows intersectifgby the area of the intersection.
In case ofr > 1, we repeat the procedure abavetimes in order to
check all(r - &)2 windows.

In the rest of the section, we seek ways in which density bsdod
arbitrarily located windows can be enforced by density htsuon fixed
dissection windows. Such rules can be viewed as a form ofitgens
related layout design rule. We compare two ways of applyingpe
local rules to windows having top-left corners at poifits¥, j - ¥),
i,j=0,1,.., & for somer > 1 such that| is an integer. First, we con- | l ‘ ‘ | l
sider what happens when we enforce upper and lower dengitydso
in each individual¥ x ¥ tile of our fixed dissection (Theorem 7), and
then we derive upper/lower bounds in the case when we enttane \ \ \ \ \ \ \ \
sity bounds for standand x w windows (Theorem 8). For example, if @)
we enforce the area density to be at least 25% (iLg= 0.25), then
(for r = 5) the first rule guarantees 16% area density while the stednda |
method can guarantee only 6%. The bounds from Theorems 7@ard 8
help to choose appropriate combinations of fixed dissestoal design
rules corresponding to specified area density lower/uppents. \ | | | [

2. For each row, from left to right, create metal fill in the spde-
tween the rectangles (with small separation from the neighf
rectangles on the left and right).

Figure 4 shows an example of a wiring-type layout along withretal
fill solution produced by the above algorithm. Many curreesigns
contain regions with wiring geometries of this form.

| [ | |
1 /| I |

| | | |
(b)

Theorem 7 Suppose all¥ x ¥ fixed dissection tiles with top-left cor-

ners at pointgi- ¥, j-¥),i,j=0,1,...r({§ — 1), have area density at

least Ly and at most iJ. Then the exact lower bound on the area densityFigure 4: (a) An example of a wiring-type layout, and (b) areer
of wx w windows equals sponding metal fill solution (shaded rectangles denoterfikxa

(r—1)2 4(r—1)

max{La — 0.5,0} + iz max{La — 0.75,0}
' 4.2 Minimization of Slotting

To minimize the slotting of rectangles, we propose the feihy algo-
rithm that, whenever possible, favors adding metal fill tggnregions

and the exact upper bound equals

(r—1)? Ar-1 4 rather than slotting existing rectangles. The main idedisfapproach
2 ‘Ua— 2 max{Ua — 0.5,0} — r—zmax{Ua—O.ZS,O}. is as follows.
| 1. Inside every rectangle, if there is enough room insidet tle

rectangle lengthwise using parallel slots of width, spaced a

Theorem 8 Suppose all w w-sized windows with top-left corners at distance ofi; apart. The parametevg andd; are chosen so that

points(i- ¥, j- %), fori,j =0,1,...,r({§ — 1), have area density at least
La and at most . Then any wk w window has density at least

14+ and at most Y+ £ — L, and these bounds are tight.

4 Synthesisof Filling and Slotting Patterns

Given the layout geometry along with the parameters of thmgiand

Slotting Problem, we wish to synthesize fill and slot georestsuch
that all windows satisfy the density bounds. In this sectierfirst con-
struct filling patterns for wiring-type layouts that are afiy produced
by preferred-direction area routers. Then we considetistppatterns

the density inside the rectangle does not exceed the maximum
allowable density (see Figure 5(b)).

2. Outside every rectangle, if there is enough room (witlpees

to neighboring rectangles), create a maximum-density Infita
band of widthw, at distancel, away from the rectangle, leaving
empty space between the rectangle and this band (see Figiwre 5

3. Fill up the remaining empty areas of the layout (outsidehed

outer bands) with a canonical slotted metal pattern coomding
to the density lower bound (see Figure 5(d)).

of minimum area. Finally, we derive conditions when bothaaaad
perimeter density bounds can be satisfied, and we suggesipsiape
filling patterns for such situations.

This algorithm clearly satisfies the density upper and losemds
for appropriate values al;,w;,d, andw, which depend onv, c and
the density upper and lower bountsThese values can be computed
in constant time, and the overall algorithm can be imple@@nod run

4.1 Fill Synthesisfor Wiring-Type Layouts efficiently.

Here we present an efficient metal fill synthesis algorithat ill han-
dle layouts containing mostly wires occupying discrete spwhere
wire segments have discrete widths and varying lengthsddad pre-
ferred-direction area routers typically produce such geties.

If the separation between adjacent wire rows for this typlaydut
is nearly the same as the width of the rows (rectangles) aymut den-
sity never exceeds 50% or 60% anywhere. Thus, typical deuapjter
bounds trivially hold (i.e., are never violated due to thaimium spac-
ing rules for interconnect). To solve the Filling and SlagtiProblem
for this kind of layout, we only need to make sure that the dgtsver 19Recall from Section 1 that slotting requires several defign changes, particularly

bound is satisfied everywhere. Ai{klogk) algorithm can achieve this since slotted power buses will have reduced current cagrgapability. The slotting orien-
as follows: tation is aligned with the direction of current flow.

4.3 Simultaneous Area and Perimeter Bounds

In this subsection, we characterize combinations of arebpanime-
ter densitiegDa, Dp) that can be simultaneously satisfied by the same
filling pattern.

As discussed in Section 1, all geometries must satisfy mimm
length and minimum separation rules. In particular, no &htire di-
mensions, nor any distance between features, can be lgss.tHa
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Figure 6: Two patterns with maximum perimeter. (a) the pati,
with minimum possible area, and (b) the pattB,with maximum

Figure 5: For each rectangle of the given layout (a), we ergar-  area.
allel slots in the direction of the current flow, and a coresging
maximum-density band just outside the rectangle (b). Athaa-

ing empty areas between rectangles are filled with a caniomietal

pattern having minimum density (c).

maximum
perimeter

practice, the distance between filling or slotting georestand near- . |
est layout feature is constrained to be greater thanc. However we the region |
can still view regions eligible for filling as-polyominoesi.e., poly-
ominoes [5] with sides a multiple afthat are in distance’ from the
layout features. The fill pattern should also consist of polinoes in
thec-grid, i.e., the minimum separation rule implies that a jpdifilled
cells which share exactly one corner should have one comnied fi A
neighboring cell.

First, we will describe filling patterns for a rectangulagien R
which have maximum perimeter, and either the minimum or manxn
allowable area density. The pattd#gi, with the minimum area density Figure 7: Thex-axis represents the area and thaxis represents
fills all cells which have top-left corner coordinatés+ 2ci,b+2cj),  the perimeter of the filling pattern. The highlighted regisith ver-
where(a, b) is one of the corners &k (see Figure 6(a)). This pattern has tices Py, Pmin, Pmax andPy represents the combinations of area and
area slightly more thaé -area(R), because it fills approximately every perimeter for which there exist filling patterns.
fourth cell of R. The patternPnax with maximum area density fillR
completely, leaving empty only cells with coordinatest c+ 2ci,b+
c+ 2cj) (see Figure 6(b)). The area of this pattern is slightly latan
3. areaR) because it leaves empty approximately every fourth cell §tandard-cell layouts produced by an industry place-andertool'?

We also use random instanceskof 2000 400Q800Q 16000 rectan-

Two more patterns are necessary for completing the degmTipf gles in square layout regions of side- 200Q 4000, with window sizes

— 13
all possible patterns. These are simply the empty pafgmith zero W= 20,40, 80. i . .
perimeter and area, and the completely-filled patfyrhaving both Table 1.shows runtimes and maximum computed area d¢n3|ty for
perimeter and area equal to thoseRof In the graph of Figure 7, the each algorithm. The first column of the Table represents tipéet

x-axis represents area and taxis represents perimeter. The highk/N/W/Type where “Type” denotes the two regimes of “wiring-type”
lighted region with vertice®g, Pmin, Pmax and Py represents the com- (W) and “random-small” (R) (see Footnote 13). The secondroal
binations of area and perimeter densities for which theistditing 9\ves the runtime (in CPU seconds on a 167MHz Sun Ultra-1) and
patterns. Notice that a square has the minimum perimetéraiven maximum window density for the algorithm of Section 2.4. Thied
area. LetSbe the area of a maximum square which can be embeddBEPugh sixth columns give (CPU and density values) obthinethe
in R. Before the pattern area react&ghe minimum perimeter grows oVerlapping fixed-dissections approach using 1,2, 5, and 10, re-
quadratically; pas§, the minimum perimeter grows linearly. spectively. We observe that, as expected, the fixed-disseapproach
The algorithm for finding a pattern with a given area and petén 'S faster but less accurate, and that its accuracy imprdeaslity (at the

is straightforward: it starts with the minimum area pattérat has the C€0St of additional CPU time) asincreases.
given perimeter, and sequentially adds square cells wdcsiintil the
necessary area is achieved.

area density

_;U-hl

6 Conclusions and Ongoing Research Directions

) ) In conclusion, we have introduced a critical new problemhia inter-

5 Computational Experience face between lithography, physical layout design and pewnce ver-

i i . ification. We have given the first formulation of tfiling and slotting
We now report our computational experience for (i) the fagieeted ropiemsthat arise in layout post-processing and layout optimizati
time algorithm of Section 2.4 (ALG3), and (ii) a simple impien-
tation of the approximate overlaﬂ)ing fixed-dissectionprapch of  2Benchmark 1 corresponds to a 1756-cell design and has 4¢@hgtes; Benchmark 2
Section 3 (FD), withr = 1,2,5,10:. Our benchmarks include CIF- corresponds to a 8131-cell design and has 47904 rectaagiéBenchmark 3 corresponds

i to a 20577-cell design and has 127760 rectangles. For these benchmarks, we have
formatted (converted from GDSII Stream) M2 geometries fribmee 3413461888 111905 andv — 200020004000 for window size.

13 Until k rectangles have been generated, we repeatedly generateraatengle having
LGiven a fixed dissection intg/w)? windows of sizew x w, we iterate over each layout width uniformly random inwimin, Wmax and height uniformly random iffimin, hmax], such
rectangle, and add the rectangle’s area contribution tddte of each window that the that the rectangle fits inside the layout region and is at léiasancec from all previously
rectangle intersects. We then check all windows to find thedewv with maximum area generated rectangles. There are two regimes: “wiring“ty[#é) usesWmin = 1, Wmax =
density. We repeat this processtimes. 1000, anthimin = hmax= 1; “random-small” (R) use€®min = hmin = 1, Wmax = hmax= 10.
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Test Runtime / Density

for manufacturability. We have also developed a number fefcéfe | | Jn/w/Type LGS O o) =V FOUI0)

z;lgorithms for density analysi.s.(both in the genera] casbiala.prac- CPUden| CPUden| CPUden| CPUden| CPU den
tical context) as well as for filling/slotting synthesis. Qalgorithms [ Tk2k20/R 9.5 360 0.1 .208] 0.1 .230| 05 .315| 2.1 .360
have been integrated into a software environment that desGDSIl | 1k/2k/40/R 3.5 .113} 0.0 .090| 0.1 .090| 0.4 .106| 1.4 .109
reader/writer, CIF manipulation, and a geometric datajadiminary | 1/2K/80R 27.045)0.0.031) 0.1 .033| 04 .038] 13.038
dat . but also point out the need for cairiple- 1k/4k/20/R 354 .340| 0.1 .203| 0.2 .203| 1.0 .203| 3.8 .203

ata are encouraging, p : 1k/4k/40/R 10.1 .129| 0.0 .051| 0.2 .058| 0.5.090| 1.9 .090
mentation. We are currently seeking more test cases andtylemles | 1k/4k/so/R 3.5 .037| 0.1 .023| 0.1 .023| 0.4 .023| 1.4 .029
from industry to further refine our approaches and implemigons!* [ 4k2k20R 20.7 .403] 0.2 .298| 0.4 .298| 1.7 .388| 5.9 .388
We believe that our formulations capture several requirgmen fu- | 4k/2</40R 154 .169| 0.2 .127] 0.4 .145]| 14 .160) 53 .161

. . P . 4Kk/2k/80/R 26.9 .078| 0.2 .067| 0.4 .067| 1.3 .069| 4.9 .069
ture Illthography and provide a key unification betwgen ipraphy and | 4. a/20R 1023 362| 02 203| 05 210| 21 225| 7.9 295
physical design. Our current work addresses such issuéedslbow- | ak/4k/i40/R 29.7 .133| 0.2 .096| 0.4 096| 1.5 .097| 5.6 .097
ing: 4k/4k/80/R 15.2 .052| 0.2 .037| 0.4 .037| 1.4 .041| 5.0 .041
. - e 16k/2k/20/R || 130.8 518| 1.1 .313| 1.5 .368| 5.9 .403| 22.7 .428
¢ developing more efficient, general and provable fillingtshgy | 1sk/2k40/R || 128.6 266| 1.1 .188| 1.4 234| 57 .249| 20.5 .249

algorithms (e.g., for simultaneous perimeter- and arewsithe | 16k/i2k/80/R || 368.2 .172| 0.9 .139| 1.4 .139| 5.3 .144| 19.9 .150

based criteria); 16k/4k/20/R || 368.1 .380| 0.9 .360| 1.6 .360| 6.5 .360| 23.8 .360

N ) ) ) ) ) | 16ki4k/40/R || 125.9 .183| 0.9 .136| 1.5 .136| 5.6 .136| 20.6 .166
o finding min/max density/perimeter windows in worst-casedi | 16k/4k/80/R || 123.7 .096| 0.0 .083| 1.4 .083| 5.4 .085| 19.5 .085

o(n?) or o(k?); and TKI2KI20/W 13.7 350 0.1 .300| 0.3 .300] 2.0 .350] 7.6 .350

e maintaining knowledge of min/max density/perimeter wiwdo i:ﬁgzggm g:‘; :3:213 gji :gig gf :gfg (1):2 :gfg 3:(2) :ggg
under dynamic rectangle insertion/deletion in tiofa) or o(k). 1k/4k/20/W 39.9 250! 0.2 200! 0.4 200| 2.5 200! 10.0 .200
1k/4K/40/W 11.9 .175| 0.1 .100| 0.2 .125| 1.2 .150| 5.1 .150

1k/4K/80IW 5.0 .138| 0.0 .077| 0.1.092| 0.7 .092| 2.8 .092

7 Acknowledgments aK2KI20M || 44.0 .500] 0.4 450 0.9 450| 4.8 450 | 19.2 450

o . . 4k/2k/40/W 30.7 .474| 0.3 .389| 0.6 .392| 3.0 .396| 11.7 .413
We thank Tom Laidig and Kurt Wampler of MicroUnity Systems-En 4k/2k/so/w 46.1 .410| 0.2 .343| 0.5 .370| 2.2 .373| 8.1 .383
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time. We gratefully acknowledge a software donation frontwairk TeRERkE0MW 1679 5001 11 500 T 23 500 105 5001 40.0 500
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Victim Layer Total Capacitance (10~ °F)
Same layel-| Filllayers
neighbors? | i—1,i+1?| £€=39 £=27
N N 2.43(1.00)| 1.68(L.00)
N Y 3.73(1.54)| 2.58(1.54)
Y N 7.47(1.84)| 3.00(1.84)
Y Y 5.29(2.18)| 3.66(2.18)

Table 2: Raphael 3-D field solver results for total capaciegxtrac-
tion of a single victim conductor. The conductor on layer20x 1.
Line-to-line spacing is 1, line width is 1, line thicknessli%, and
dielectric height is 1.5. Metal fill features on layers 1 andi + 1

AR
I|I I|I|I|I|I|I|I|I
(b)

are 10x 1 with side-to-side spacing of 1 and end-to-end spacing ofFigure 8: The two fill patterns considered in Raphael sinoiat

4. The dielectric permittivity was set to both 3.9 (for SiGand 2.7
(cf. recent announcements by Sematech [12] of new low-figvity
dielectric technologies). Layeis- 2 andi + 2 are set to be 49 40

ground planes.

Victim B Total Capacitance (10~ 1°F)
FillTayer offset | Fill geometry| €= 3.9 E=27
N TOx 1 3.776(1.00)| 2.614(L.00)
N Tx 1 3.750(0.99) 2.596(0.99)
Y TOx I 3.777(1.00)[ 2.615(1.00)
Y Tx 1 3.745(0.99) 2.593(0.99)

Table 3: TMA/Avant! Raphael capacitance extraction resuiotal

capacitance for the middle victim conduct®r

1x 1 squares separated 1 unit apart (a), andc 10rectangles sep-
arated 1 unit apart horizontally and 4 units apart verticé). The
fill pattern (b) was used for the simulations reported in €zl

first place. Similarly, Table 4 shows that the total capacitavalues
for each of the outside conductors §ndC) also fluctuate by less than
one percent. We conclude that the filling and slotting cabjesu to
constraints involving feature dependencies between $ayer viewed
as a “single-layer problem”.

Three 20« 1 victim conductor#\, B andC (with Bin the middle),
with spacing 1 between them, are placed on a victim layAtl
conductor thicknesses = 1.5; dielectric height betweearkay
1.5. Dielectric permittivity was set at either 3.9 or 2.7.

A 40 x 40 bottom ground plane is placed at layer2.

Two types of fill geometry patterns were considered for layer
i —1 (see Figure 8): (a) & 1 squares witl{x, y) origins of form
(2i,2j), i andj integers, resulting in an overall pattern area den-
sity (for an infinite layout region) of 0.25, and (b) %01 (tall
and thin) rectangles witfx,y) origins of form(4i,14j) or (4i —
2,14j—7), i and j integers, resulting in an overall pattern area
density (for an infinite layout region) of 0.357.

An offsetis optionally introduced. When the fill geometries are
offset, they lie directly under the spaces between themictin-
ductors. When there is no offset, the fill geometries lie atlye
under the victim conductors.

Table 3 shows that the total capacitance values for the micloth-

ductor @) fluctuate by less than 1 percent over all four combinatidns o
fill pattern and offset. The critical factor is that the fillgsesent in the

Victim A, C Total Capacitance (10 1°F)
9

Fill Tayer offset | Fill geomeiry] &= 3. €E=27

N T0x 1 3.009(1.00)] 2.083(1.00)
N Tx 1 2.984(0.99)] 2.066(0.99)
Y T0x 1 3.004(1.00)] 2.080(1.00)
Y Ix1 2.980(0.99)] 2.063(0.99)

Table 4: TMA/Avant! Raphael capacitance extraction resuibtal
capacitance for the outside victim conducfoor C.
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